Поиск

Храните электричество в бочках


Электрохимические аккумуляторы постоянно совершенствуются, растет емкость по отношению к весу, уменьшается цена, но, для более-менее ощутимых запасов электроэнергии они все же еще достаточно дорогие. Да и длительное хранение энергии в них затруднительно. Поэтому все еще не сбрасываются со счетов «механические» способы хранения энергии. Это супермаховики, теплоаккумуляторы, гидроаккумуляторы, гравитационные аккумуляторы и пневмоаккумуляторы.

Все эти способы имеют свои недостатки, перечисление которых сильно увеличит эту статью, поэтому я на этом задерживаться не буду. Отмечу только, что в большинстве случаев это высокая стоимость хранения энергии, по сравнению со стоимостью ее генерации с использованием природного газа или мазута. К слову сказать, это еще один повод отметить, что «экологичные» электростанции, по факту не так уж и экологичны. В большинстве случаев для покрытия «провалов» в снабжении солнечными и ветряными «фермами» используются старые добрые генераторы, работающие на ископаемом топливе. И провалы эти часто составляют более 40% от общей генерации.

Но я хочу взглянуть на вопрос хранения электроэнергии не с точки зрения промышленных масштабов, а для индивидуальных нужд.
Понятно, что химические аккумуляторы наиболее простое решение, но их использование целесообразно только для хранения небольших объемов и недолго. Цена растет прямо пропорционально емкости и при определенном значении этой емкости стоимость становится сравнимой или большей чем стоимость нехимических аккумуляторов. То есть, для компенсации нескольких десятков киловатт все эти решения будут проигрывать в стоимости электрохимическим аккумуляторам, а для сотен или тысяч (если мы будем запасать на зиму для отопления) они также фантастически дороги, как и электрохимические.

Если уж использовать бытовые системы длительного хранения электроэнергии и в больших объемах (несколько сотен или тысяч кВт), то перспективнее будут пневмоаккумуляторы. Основная причина это их относительно небольшие размеры и несложное наращивание емкости. И срок хранения сжатого воздуха очень большой, и к большому диапазону температур устойчивы. К тому же в пневмодвигателях может очень быстро регулироваться мощность и поддерживаться постоянные обороты, что позволяет использовать генератор переменного тока без преобразователя и дополнительных схем стабилизации. В теории, можно питать компрессор напрямую от источника (СБ, ветряк) «грязным током», а емкость, вместе с пневмодвигателем, возьмут на себя подачу необходимой мощности, напряжения и частоты. Более того, в случае с ветряками, можно крутить компрессор напрямую от вала ветряка, без использования лишнего генератора.

Но, с другой стороны, есть ряд проблем. Первая – довольно низкий КПД, в промышленных системах 40-50%, в бытовых вряд ли и 30% удастся достичь. Вторая – сжатие в одну ступень выше 15 атмосфер проблематично из-за нагрева воздуха (возгорание масла), а значит компрессор будет далеко не простой и дешевый. Это целый комплекс из 3-4 компрессоров с промежуточными теплообменниками. Третья – сильное охлаждение воздуха при расширении, что приведет к обледенению деталей, в том числе камеры двигателя, при использовании атмосферного воздуха, увеличению вязкости масла и, в итоге, очень низкому ресурсу. В существующих промышленных системах воздух либо предварительно нагревают, либо используют сжатый воздух в газовых турбинах. Получается, система хранения дополняет систему генерации, а эта не та цель, которая преследуется для автономии своего дома.

Тут я хочу рассмотреть новый способ увеличения КПД компрессоров и пневмодвигателей. Собственно именно он и заставил заинтересоваться таким типом хранения энергии. И для начала хотелось бы напомнить о причинах низкого КПД компрессоров и пневмодвигателей. А она довольно проста — в них сжатие происходит близко к адиабате, почти без теплообмена с внешней средой, а потому существенная часть затраченной энергии переходит в тепло сжимаемого воздуха. Затем сжатый воздух охлаждают и его давление падает процентов на 30%. А вот если сжимать воздух/газ при постоянной температуре, своевременно охлаждая его в процессе сжатия, то процесс будет близок к изотермическому. В итоге, для достижения одного и того же давления, при адиабатном сжатии требуется затратить в 1,5 раза больше энергии, чем при изотермическом. При расширении похожая ситуация – при своевременном подводе тепла для поддержания постоянной температуры выход энергии примерно на 30 % больше чем в теплоизолированной среде.

То есть, возьмем для примера систему хранения энергии на основе сжатого воздуха. При сжатии около 30% механической энергии компрессора будет затрачено на нагрев воздуха. Затем, при расширении также на 30% меньше будет получено механической энергии. Условно, пренебрегая потерями в электродвигателе/генераторе и трением в цилиндрах, из 1000 кВт электроэнергии при сжатии, воздуху передано 700 кВт, а при расширении получено 490 кВт, то есть 49%. На практике, сжатие происходит не полностью по адиабате и потери на трение и преобразование электроэнергии не нулевые, поэтому такие системы хранения энергии имеют КПД 42-54%.

И вот возвращаясь к способу повышения КПД таких систем. Идея довольно простоя – создать потоки в сжимаемом/расширяемом воздухе, то есть принудительную конвекцию. Проще говоря, разместить внутри цилиндра крыльчатку вентилятора. Теплопроводность воздуха довольно низкая и теплопередача в нем происходит преимущественно за счет конвекции. В цилиндре компрессора она близка к естественной, и теплообмен между стенками цилиндра возникает преимущественно в слое воздуха, расположенного непосредственно у этих стенок. Основная же часть воздуха в теплообмене не участвует и нагревается до высокой температуры.

В результате создания принудительной конвекции, воздух постоянно перемешивается и весь объем контактирует со стенками. Для увеличения скорости теплообмена, можно расположить внутри цилиндра теплообменник. При отсутствии потоков в цилиндре такой теплообменник бесполезен, так как повториться ситуация со стенками цилиндра – в теплообмене будет участвовать только воздух, находящийся в самом теплообменнике. Но использование теплообменника вместе с вентилятором кардинально меняет ситуацию. Ведь теперь теплообменник будет постоянно обдуваться воздухом.

Примерная схема реализации такого устройства в компрессоре или пневмодвигателе (взята с сайта https://z2017128006.blogspot.ru/ , там же подробное описание изобретения от автора):

По сути, компрессор комплектуется дополнительным блоком, размещенным между цилиндром и крышкой с клапанами. Через каналы в теплообменнике циркулирует теплоноситель (например, тосол) направляемый далее в радиатор или они продуваются атмосферным воздухом, при использовании более простого воздушного охлаждения. А сквозь щели теплообменника, расположенные внутри цилиндра продувается сжимаемый/расширяемый воздух. В центре всасывается, а по краям выдувается внутрь цилиндра, постоянно перемешивая весь объем. КПД пары компрессор/пневмодвигатель при использовании такого способа 100% минус трение поршня (1-3%) и минус затраты энергии на внутренний вентилятор и систему охлаждения. Последние зависят от скорости работы компрессора – чем она ниже, тем меньше мощность вентилятора и проще система охлаждения (например, воздушная – просто еще один вентилятор). То есть, вполне достижимы значения КПД 80-85% в не слишком сложных и дорогих конструкциях.

Но, понятное дело, такие устройства еще не выпускаются. Хочется надеяться что именно «еще». Тем более, что могут быть и кустарные варианты. Впрочем, я не претендую на звание «крупного специалиста» и, возможно, я ошибаюсь в оценке эффективности данного изобретения и может быть среди прочитавших эту статью найдутся люди лучше меня разбирающиеся в вопросе – прошу высказаться в комментариях.
engineering-ru.livejournal.com

Добавить комментарий